+ PhD program IMAGING

+ Affiliated Doctoral School: ED352

Course title	MRI Physics
Keywords	MRI, biophysical models, biomarkers
Priority Audience	PhD students, Master Students
Registration	For doctoral students: on ADUM Site For master students: contact cecile.lavoute@univ-amu.fr
Location of the course	CRMBM, CEMEREM, Hopital la Timone, Bat F.264 rue St Pierre - 13385 Marseille
Course duration	2.5 days/15 HETD
Next Session	12-13-14 February 2024
Objectives	Introduction to MRI: quantum basis, macroscopic magnetization, localization principle, signal processing and image reconstruction, instrumentation
	To understand the different types of MRIcontrasts and their association with biophysical models for <i>in vivo</i> applications
Program	- Basics: from the spin to the image
	 MR contrasts Parametric imaging
	- Hands on
Possible prerequisites	Quantum Physics, Modelling, numerical physics, signal processing
Skills targeted at the end	- Theoretical basis of Nuclear MagneticResonance & Magnetic Resonance Imaging
of the course	- Advanced parametric MRI
	- Relationship between biophysicalmodels and MR contrasts
Toophing woth ad	Dowerneint precentations & bands on in CDMDM Job
Teaching method	Powerpoint presentations & hands on in <u>CRMBM lab</u>
Team or speaker	L. de Rochefort, O. Girard, S.Rapacchi, L. Soustelle, G. Duhamel - groupe « Physics and digital technologies for quantitative imaging ofthe central nervous system »
Number of participants	5 - 40

+ MRI physics courses

+ Basics: from the spin to the image – (Ludovic de Rochefort)

- Quantum basis: spin ½, Larmor Resonance, Thermal equilibrium, MagnetizationMacroscopic
- Magnetization: Spin Echo, Gradient Echo
- NMR Relaxation T1, T2, T2*
- Instrumentation (B0, gradient, RF coil)
- Spatial coding / Localization principle / parallel imaging
- Contrasts and basis for image interpretation

+ MRI Contrast Mechanisms - (Guillaume Duhamel, Olivier Girard)

- Diffusion
- Perfusion (DSC, DCE, ASL, BOLD)
- Relaxation (multicomponent)
- Magnetization Transfer (MT, CEST)
- Magnetic Susceptibility
- + Parametric imaging (Lucas Soustelle, Stanislas Rapacchi)Analytic and

matrix formalism

- Direct model / inverse model (fitting)
- Regularization
- Regularization

· Advanced MR techniques (MR Fingerprinting, Compressed sensing, Artificial Intelligence)

+ Hands on – Demo on Imaging Plateform

• In vivo MRI experiment: Parametric image acquisition on the (pre)clinical MRI scanner of CRMBM / Image processing